Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Partnerships and Cooperations

European Initiatives

FP7 Projects

Proofcert

Participants : Hichem Chihani, Quentin Heath, Dale Miller [correspondant] , Fabien Renaud.

Collaborations in European Programs, except FP7

STRUCTURAL: ANR blanc International

Participants : Kaustuv Chaudhuri, Nicolas Guenot, Willem Heijltjes, Stefan Hetzl, Novak Novakovic, François Lamarche, Dale Miller, Lutz Straßburger.

This project is a consortium of four partners, two French and two Austrian, who are all internationally recognized for their work on structural proof theory, but each coming from a different tradition. One of the objective of the project is build a bridge between these traditions and develop new proof-theoretic tools and techniques of structural proof theory having a strong potential of applications in computer science, in particular at the level of the models of computation and the extraction of programs and effective bounds from proofs.

On one side, there is the tradition coming from mathematics, which is mainly concerned with first-order logic, and studies, e.g., Herbrand's theorem, Hilbert's epsilon-calculus, and Goedel's Dialectica interpretation. On the other side, there is the tradition coming from computer science, which is mainly concerned with propositional systems, and studies, e.g., Curry-Howard isomorphism, algebraic semantics, linear logic, proof nets, and deep inference. A common ground of both traditions is the paramount role played by analytic proofs and the notion of cut elimination. We will study the inter-connections of these different traditions, in particular we focus on different aspects and developments in deep inference, the Curry-Howard correspondence, term-rewriting, and Hilbert's epsilon calculus. As a byproduct this project will yield a mutual exchange between the two communities starting from this common ground, and investigate, for example, the relationship between Herbrand expansions and the computational interpretations of proofs, or the impact of the epsilon calculus on proof complexity.

Besides the old, but not fully exploited, tools of proof theory, like the epsilon-calculus or Dialectica interpretation, the main tool for our research will be deep inference. Deep inference means that inference rules are allowed to modify formulas deep inside an arbitrary context. This change in the application of inference rules has drastic effects on the most basic proof theoretical properties of the systems, like cut elimination. Thus, much of the early research on deep inference went into reestablishing these fundamental results of logical systems. Now, deep inference is a mature paradigm, and enough theoretical tools are available to think to applications. Deep inference provides new properties, not available in shallow deduction systems, namely full symmetry and atomicity, which open new possibilities at the computing level that we intend to investigate in this project. We intend to investigate the precise relation between deep inference and term rewriting, and hope to develop a general theory of analytic calculi in deep inference. In this way, this project is a natural continuation of the ANR project INFER which ended in May 2010.